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Introduction

• Path algebras are generated by directed paths in a graph:

γ

γ′

γ ⊔ γ′

BDCT
TGGA

• Physics: direction encodes causal structure.

• This talk: path algebras and quantum dynamics.
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Notation and Conventions

• Distinguished terms are blue: path algebra.

• Math symbols in equations are red: i h̵
∂ψ−

∂t
= Hψ−.

• Math symbols in figures are black: see last slide.

• My own material is green: co-relative histories.

• Graphs are acyclic directed “up the page:”

BDCT
TGGA

means
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Personalities

Newton Cauchy Riemann Einstein

Schrödinger Wheeler Feynman Grothendieck

Hawking Sorkin Connes Malament
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Where We’re Headed

We’ll look at paths in a “causal multiverse.” Here’s a small part:

BDCT
TGGA

Path algebra leads to causal Schrödinger-type equation [1]:

ψ−R;θ(r) = θ(r) ∑
r−≺r

ψ−R;θ(r
−
).
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Partially Defined Operations

• Subtraction (e.g., in N):

• Division (e.g., in Z):

• Matrix Multiplication:

• Proper Intersection:
(algebraic geometry)

• Path Concatenation:
(algebraic topology)

• Many other examples!

Defined Not Defined
5 − 3 3 − 5

6/2 7/2

1 0

4 2

1 1

2 −1

1 0 2

4 2 −1

1 1

2 −1
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Temptation: “Fix” Partially Defined Operations

• Subtraction: form Grothendieck group of N, which is Z.

• Division: localize Z to get Q. (Leaves out 0!)

• Matrix multiplication: restrict to n × n to get ring Mn.

• Proper intersection: impose adequate equivalence to get
Chow ring.

• Path concatenation: apply homotopy theory to get
fundamental group.

• Other examples: derived categories, etc.

• Questions: should a given partially defined operation
be “fixed?” If so, at what level? Can “good behavior”
be reconciled with preservation of information?
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Path Algebras

• Generated by directed paths in a graph G :

γ

γ′

γ ⊔ γ′

BDCT
TGGA

• Partially defined operation: concatenation (γ, γ′)↦ γ ⊔ γ′.

• Coefficients: any ring A.

• Multiplication: (∑
γ

aγγ)(∑
γ′

aγ′γ
′
) ∶= ∑

γ⊔γ′∃

aγaγ′γ ⊔ γ
′.

• Appeared independently in multiple fields; e.g., see [2].
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Path Algebras as Semicategory Algebras

• Space Γ(G) of directed paths in G is a
semicategory, or non-unital category.

• Two views regarding Γ(G):

1. Group-like object; paths are elements.

Connes

group monoid semigroup semicategory

2. Category-like family; paths are morphisms.

category semicategory

• Γ(G): “generalized group algebra.”

• Rich source of examples in noncommutative
algebra and geometry.

• Aside: are we too committed to categories?
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Path Algebras and Causal Structure

• Physics heuristic: causal influence flows from γ into γ′:

γ

γ′

γ ⊔ γ′

BDCT
TGGA

• Definition has physical meaning: influence flows; histories
meet.

• “Fixing” partially defined operation ⊔ would spoil this
interpretation!
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Causal Structure in Newtonian Physics

• Newton: time is universal; an event can
influence any event in its future.

Newtonx
w

z
y

x can influence
y and z

x cannot influence w

red lines:
Cauchy surfaces

past of x

future of x

small nodes:
other events

BDCT
TGGA

• Dynamical law:
dp

dt
= F.
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Causal Structure in Relativity

• Einstein: causal structure is determined by
spacetime geometry.

Einstein

x

w

z
y

x can influence z

x cannot influence
w or y

red lines:
Cauchy surfaces

small nodes:
other events

past of x

future of x

BDCT
TGGA

• Dynamical law: Rµν −
1

2
Rgµν + λgµν = 8πGTµν .
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Recovery of Metric from Causal Structure?

• What about the converse? To what extent does
causal structure determine relativistic spacetime
geometry?

Hawking

Malament

x

“stationary”

timelike

null

(all causal)

BDCT
TGGA

• Hawking-Malament [3], [4]: causal structure
determines geometry up to a conformal factor.
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Causal Set Theory

• Sorkin: in discrete setting, counting measure
plays role of conformal factor [5]. Hence, “order
plus number equals geometry.”

Sorkin

Riemann

x does influence z

x does not influence
w or y

red nodes:
“Cauchy surface”

w

x
y

z

BDCT
TGGA

• Special case of causal metric hypothesis [1].

• Riemann: “in a discrete manifold, the ground of
metric relations is given in the notion of it.”

• Aside: domains; e.g., Martin-Panangaden [6].
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Cauchy Surfaces in Causal Set Theory

• Cauchy surface: filters information.
• Newtonian: constant-time section.
• Relativity: spacelike hypersurface.
• Causal set theory: maximal antichain.
• (Aside: Cauchy, Dirichlet, Neumann...)

• Problem: maximal antichains are permeable!

Cauchy

permeating paths

red nodes:
maximal antichain

BDCT
TGGA

• Complicates “3 + 1 approach” to dynamics.



Introduction Path Algebras Classical Causal Theory Quantum Causal Theory PA in QCT References

Relation Space

• Solution to permeability: move to relation space!

BDCT
TGGA

• Elements in relation space are relations between events.

• Mathematically: relation space is a line digraph.

• Analogous to a morphism category.

• Maximal antichains in relation space are impermeable [1].

• Later: Grothendieck’s relative viewpoint.
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Causal Structure in Quantum Physics

• Schrödinger: probability amplitudes encode
likelihood of events.

Schrödinger

x
w

z
y

x can influence
probability of
y and z

x cannot influence
probability of w

red lines:
Cauchy surfaces

small nodes:
other events

past of x

future of x

BDCT
TGGA

• Causal theory remains subtle and controversial!
(Measurement problem, Bell, no-cloning, etc.)

• Dynamical law: i h̵
∂ψ−

∂t
= Hψ−.
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Histories in Quantum Theory

• Double-slit experiment:

source

slits

detector

classical
paths interference

pattern

• Each path to the detector represents a particle history.

• Particles emitted individually build up interference pattern!

• Somehow all histories are relevant!
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Sum over Histories

• Feynman: all histories contribute to probability
amplitude ψ, with phases given by action S for
Lagrangian L [7].

X spacetime region

γ path, γi “path
increment”

σi , σi+1 Cauchy
surfaces

FeynmanX

σi+1

σi

γi

γ

t1

ti

ti+1

tN+1

xi xi+1 BDCT
TGGA

• Path integral for probability amplitude:

ψ(X ;L) ∶= lim
∣∆∣→0

∫
σN

...∫
σ1
∫
σ0

C ⋅ exp
⎛

⎝

N

∑
i=1

i

h̵
S(γi)

⎞

⎠
dx0dx1...dxN
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Feynman Recovers Schrödinger

• Shorthand for path integral:

ψ(X ;L) ∶= lim
∣∆∣→0

∫
x
ψ(∆; x;L)dx.

• Past wave function:

ψ−(x ′, t ′) ∶= lim
∣∆−∣→0

∫
x−
ψ−(∆−; x−;L)dx−.

• Approximate recursion:

ψ−(x ′′, t ′′) ≈ ∫
σ′
ψ−(x ′, t ′)exp(

i

h̵
S(δγ))dx ′.

• Take limit:

i h̵
∂ψ−

∂t
= Hψ−.
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Background Independence

• Wheeler: “matter tells spacetime how to curve;
spacetime tells matter how to move” [8].

Wheeler

X

γ

X ′

γ′

BDCT
TGGA

• Different γ and γ′ imply different X and X ′.

• Generalization: different histories mean different
universes!

• Sum over histories becomes sum over universes!
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Co-Relative Histories

• Grothendieck: “not objects; relationships
between objects.” (relative viewpoint)

• Here, “objects” are histories (universes).

• Co-relative history: relationship between
histories [1].

• Four simple examples, discrete case:

Grothendieck

• Note iteration of structure; a graph of graphs!

• Quantization is iteration of structure in quantum
causal theory! (Aside: categorification.)
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Kinematic Schemes

• Kinematic scheme: special “causal multiverse” built from
universes and co-relative histories. Here’s a portion of one:

red: maximal antichain
thick: permeating path
gray: nontransitive

BDCT
TGGA

• Related: Sorkin’s sequential growth dynamics [9].
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Multidirected Structure

• Are the simplest co-relative histories between a fixed pair of
universes unique? No!

• Example due to Brendan McKay [10]:

essentially
different
relationships!

multiple
edges in
kinematic
scheme

1

2 3

4 5 6

7 8

1

2

4

+

3

5

7

6

8

1

3

5

7

6

8

+

2

4

BDCT
TGGA

• Significance: kinematic schemes are generally multidirected.
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Causal Schrödinger-Type Equations I

• Recall Schrödinger’s equation:

i h̵
∂ψ−

∂t
= Hψ−.

• Goal: derive discrete causal analogue:

ψ−R;θ(r) = θ(r) ∑
r−≺r

ψ−R;θ(r
−
).

• Motivations:
• Quantum spacetime and quantum gravity.
• Less ambitious: “random lattice field theory.”
• Quantum circuits and quantum computing.
• Intrinsic order-theoretic and graph-theoretic interest.
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Causal Schrödinger-Type Equations II

Setup to derive ψ−R;θ(r) = θ(r) ∑
r−≺r

ψ−R;θ(r
−
) ∶

• R relation space over a graph G .

• r−, r consecutive elements of R sharing vertex x (i.e., r− ≺ r .)

r−

rx

BDCT
TGGA

• Note: r−, r could represent co-relative histories, relations
between spacetime events (shown here), part of a quantum
circuit, morphisms of some type...
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Causal Schrödinger-Type Equations III

Setup to derive ψ−R;θ(r) = θ(r) ∑
r−≺r

ψ−R;θ(r
−
) continued:

• θ ∶ Γ(G)→ A phase map into ring A.

• Γ−r space of maximal paths terminating at x :

x r

Γ−r
BDCT
TGGA

• Note: r extends any γ ∈ Γ−r .
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Causal Schrödinger-Type Equations IV

Past path functional and past wave function:

• Past path functional encodes “all information flowing into r :”

Ψ−
R;θ(r) ∶= ∑

γ∈Γ−r

θ(γ)γ.

• Past wave function given by “evaluating” Ψ−
R;θ(r):

ψ−R;θ(r) ∶= ∑
γ∈Γ−r

θ(γ).

• Ψ− is a “path algebra level precursor” to ψ−.
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Causal Schrödinger-Type Equations V

Recursion formula and result:

• Replacing r with r− in Ψ−
R;θ leads to recursion:

Ψ−
R;θ(r) = ( ∑

r−≺r

Ψ−
R;θ(r

−
))θ(r)r .

• “Evaluating” yields desired causal Schrödinger-type equation:

ψ−R;θ(r) = θ(r) ∑
r−≺r

ψ−R;θ(r
−
).
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Concluding Remarks

• Above derivation works for any (acyclic directed)
graph G and ring A.

• “Acyclic” can be relaxed (“closed timelike curves.”)

• Most interesting: G is a kinematic scheme.

• Related: Isham [11], Raptis [12], Baez [13], etc.

• Central question: what is the phase map θ?
• Involves “Lagrangian” or “action.”
• Related: “discrete Einstein-Hilbert actions.”

(Dowker-Benincasa [14], etc.)
• Involves arithmetic, finite groups, Galois theory.
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THANKS!
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