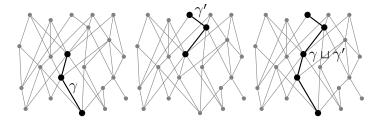
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Path Algebras in Quantum Causal Theory

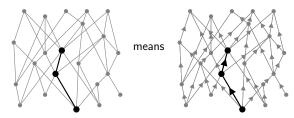

Benjamin F. Dribus Conference on Ordered Algebraic Structures

Louisiana State University

May 3, 2014

• Path algebras are generated by directed paths in a graph:

- Physics: direction encodes causal structure.
- This talk: path algebras and quantum dynamics.


ry PA in QCT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

Notation and Conventions

- Distinguished terms are blue: path algebra.
- Math symbols in equations are red: $i\hbar \frac{\partial \psi^-}{\partial t} = \mathbf{H}\psi^-$.
- Math symbols in figures are black: see last slide.
- My own material is green: co-relative histories.
- Graphs are acyclic directed "up the page:"

Path Algebras

Classical Causal The

Quantum Causal The

PA in QCT

References

Personalities

Newton

Cauchy

Riemann

Einstein

Schrödinger

Hawking

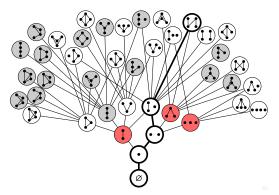
Wheeler

Sorkin

Feynman

Connes

Grothendieck


Malament

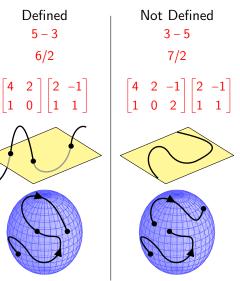
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

References

Where We're Headed

We'll look at paths in a "causal multiverse." Here's a small part:

Path algebra leads to causal Schrödinger-type equation [1]:

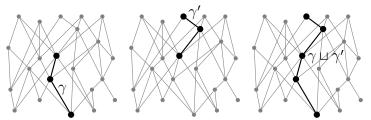

$$\psi_{R;\theta}^{-}(r) = \theta(r) \sum_{r^{-} \prec r} \psi_{R;\theta}^{-}(r^{-}).$$

usal Theory PA i

Referen

Partially Defined Operations

- Subtraction (e.g., in ℕ):
- Division (e.g., in Z):
- Matrix Multiplication:
- Proper Intersection: (algebraic geometry)
- Path Concatenation: (algebraic topology)
- Many other examples!



Temptation: "Fix" Partially Defined Operations

- Subtraction: form Grothendieck group of \mathbb{N} , which is \mathbb{Z} .
- Division: localize \mathbb{Z} to get \mathbb{Q} . (Leaves out 0!)
- Matrix multiplication: restrict to $n \times n$ to get ring M_n .
- Proper intersection: impose adequate equivalence to get Chow ring.
- Path concatenation: apply homotopy theory to get fundamental group.
- Other examples: derived categories, etc.
- Questions: *should* a given partially defined operation be "fixed?" If so, at what level? Can "good behavior" be reconciled with preservation of information?

Path Algebras

• Generated by directed paths in a graph G:

- Partially defined operation: concatenation $(\gamma, \gamma') \mapsto \gamma \sqcup \gamma'$.
- Coefficients: any ring A.
- Multiplication: $\left(\sum_{\gamma} a_{\gamma} \gamma\right) \left(\sum_{\gamma'} a_{\gamma'} \gamma'\right) \coloneqq \sum_{\gamma \sqcup \gamma' \exists} a_{\gamma} a_{\gamma'} \gamma \sqcup \gamma'.$
- Appeared independently in multiple fields; e.g., see [2].

PA in QCT

References

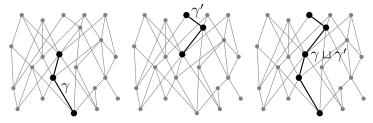
Path Algebras as Semicategory Algebras

- Space $\Gamma(G)$ of directed paths in G is a semicategory, or non-unital category.
- Two views regarding $\Gamma(G)$:
 - 1. Group-like *object;* paths are *elements*.

Connes

group monoid semigroup semicategory

2. Category-like *family*; paths are *morphisms*.



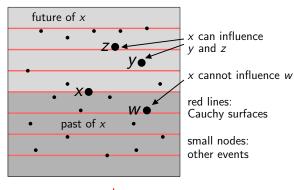
- Γ(G): "generalized group algebra."
- Rich source of examples in noncommutative algebra and geometry.
- Aside: are we too committed to categories?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Path Algebras and Causal Structure

• Physics heuristic: causal influence flows from γ into γ' :

- Definition has *physical meaning*: influence flows; histories meet.
- "Fixing" partially defined operation ⊔ would spoil this interpretation!


Quantum Causal Theory

in QCT Re

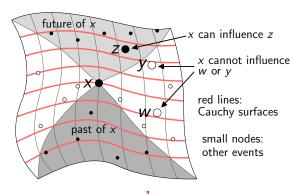
References

Causal Structure in Newtonian Physics

• Newton: time is universal; an event can influence any event in its future.

Newton

• Dynamical law: $\frac{d\mathbf{p}}{dt} = \mathbf{F}$.


Quantum Causal Theor

PA in QCT

References

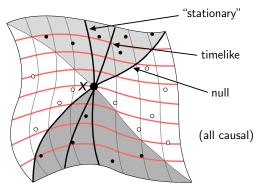
Causal Structure in Relativity

• Einstein: causal structure is determined by spacetime geometry.

• Dynamical law: $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \lambda g_{\mu\nu} = 8\pi GT_{\mu\nu}$.

Einstein

・ロト・日本・モート モー うへぐ


Quantum Causal The

PA in QCT

References

Recovery of Metric from Causal Structure?

 What about the converse? To what extent does causal structure determine relativistic spacetime geometry?

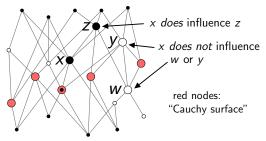
 Hawking-Malament [3], [4]: causal structure determines geometry up to a conformal factor.

Hawking

Malament

< 3 b

ъ


Path Algebras

A in QCT

References

Causal Set Theory

• Sorkin: in discrete setting, counting measure plays role of conformal factor [5]. Hence, "order plus number equals geometry."

Sorkin

- - Riemann

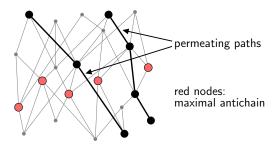
3

(日)、

- Special case of causal metric hypothesis [1].
- Riemann: "in a discrete manifold, the ground of metric relations is given in the notion of it."
- Aside: domains; e.g., Martin-Panangaden [6].

PA in QCT R

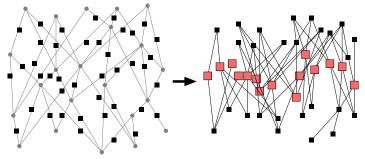
References


Cauchy Surfaces in Causal Set Theory

- Cauchy surface: filters information.
 - Newtonian: constant-time section.
 - Relativity: spacelike hypersurface.
 - Causal set theory: maximal antichain.
 - (Aside: Cauchy, Dirichlet, Neumann...)
- Problem: maximal antichains are permeable!

Cauchy

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

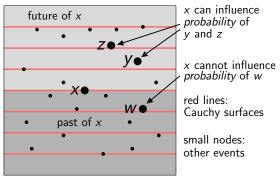

• Complicates "3 + 1 approach" to dynamics.

PA in QCT

References

Relation Space

• Solution to permeability: move to relation space!

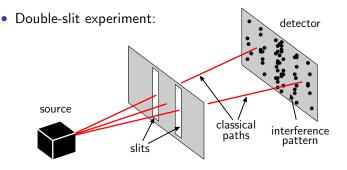

- Elements in relation space are *relations* between events.
- Mathematically: relation space is a line digraph.
- Analogous to a morphism category.
- Maximal antichains in relation space are impermeable [1].
- Later: Grothendieck's relative viewpoint.

PA in QCT F

References

Causal Structure in Quantum Physics

• Schrödinger: probability amplitudes encode likelihood of events.


Schrödinger

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

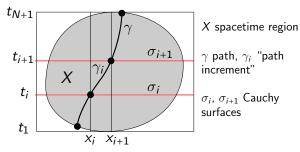
• Causal theory remains subtle and controversial! (Measurement problem, Bell, no-cloning, etc.)

• Dynamical law:
$$i\hbar \frac{\partial \psi^-}{\partial t} = \mathbf{H}\psi^-$$
.

Histories in Quantum Theory

- Each path to the detector represents a particle history.
- Particles emitted individually build up interference pattern!
- Somehow all histories are relevant!

Path Algebras


Quantum Causal Theory

PA in QCT

References

Sum over Histories

 Feynman: all histories contribute to probability amplitude ψ, with phases given by action S for Lagrangian L [7].

Feynman

• Path integral for probability amplitude:

$$\psi(X;\mathcal{L}) \coloneqq \lim_{|\Delta| \to 0} \int_{\sigma_N} \dots \int_{\sigma_1} \int_{\sigma_0} C \cdot \exp\left(\sum_{i=1}^N \frac{i}{\hbar} \mathcal{S}(\gamma_i)\right) dx_0 dx_1 \dots dx_N$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

References

Feynman Recovers Schrödinger

• Shorthand for path integral:

$$\psi(X;\mathcal{L}) \coloneqq \lim_{|\Delta| \to 0} \int_{\mathbf{x}} \psi(\Delta;\mathbf{x};\mathcal{L}) d\mathbf{x}.$$

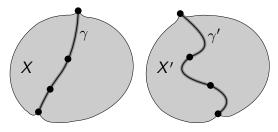
Past wave function:

$$\psi^{-}(\mathbf{x}',t') \coloneqq \lim_{|\Delta^{-}|\to 0} \int_{\mathbf{x}^{-}} \psi^{-}(\Delta^{-};\mathbf{x}^{-};\mathcal{L}) d\mathbf{x}^{-}.$$

• Approximate recursion:

$$\psi^{-}(x'',t'') \approx \int_{\sigma'} \psi^{-}(x',t') \exp\left(\frac{i}{\hbar} \mathcal{S}(\delta\gamma)\right) dx'.$$

Take limit:


$$i\hbar \frac{\partial \psi^-}{\partial t} = \mathbf{H}\psi^-.$$

ory PA in QCT

References

Background Independence

• Wheeler: "matter tells spacetime how to curve; spacetime tells matter how to move" [8].

Wheeler

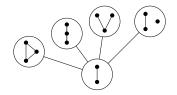
- 日本 - 1 日本 - 1 日本 - 1 日本

- Different γ and γ' imply different X and X'.
- Generalization: *different histories mean different universes!*
- Sum over histories becomes sum over universes!

Quantum Causal Theory

PA in QCT

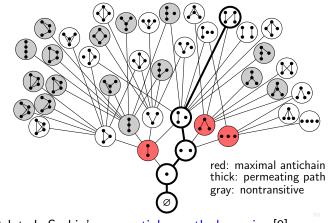
References


500

Co-Relative Histories

- Grothendieck: "not objects; *relationships* between objects." (relative viewpoint)
- Here, "objects" are histories (universes).
- Co-relative history: relationship between histories [1].
- Four simple examples, discrete case:

Grothendieck

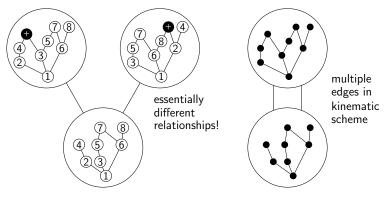


- Note iteration of structure; a graph of graphs!
- Quantization is iteration of structure in quantum causal theory! (Aside: categorification.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Kinematic Schemes

• Kinematic scheme: special "causal multiverse" built from universes and co-relative histories. Here's a portion of one:


• Related: Sorkin's sequential growth dynamics [9].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

References

Multidirected Structure

- Are the simplest co-relative histories between a fixed pair of universes unique? **No!**
- Example due to Brendan McKay [10]:

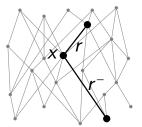
• Significance: kinematic schemes are generally multidirected.

Causal Schrödinger-Type Equations I

• Recall Schrödinger's equation:

$$i\hbar \frac{\partial \psi^-}{\partial t} = \mathbf{H}\psi^-.$$

• Goal: derive discrete causal analogue:

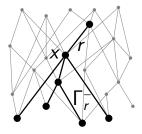

$$\psi^-_{R;\theta}(r) = \theta(r) \sum_{r^- \prec r} \psi^-_{R;\theta}(r^-).$$

- Motivations:
 - Quantum spacetime and quantum gravity.
 - Less ambitious: "random lattice field theory."
 - Quantum circuits and quantum computing.
 - Intrinsic order-theoretic and graph-theoretic interest.

Causal Schrödinger-Type Equations II

Setup to derive $\psi_{R;\theta}^-(r) = \theta(r) \sum_{r^- < r} \psi_{R;\theta}^-(r^-)$:

- *R* relation space over a graph *G*.
- r^- , r consecutive elements of R sharing vertex x (i.e., $r^- < r$.)


• Note: *r*⁻, *r* could represent co-relative histories, relations between spacetime events (shown here), part of a quantum circuit, morphisms of some type...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Causal Schrödinger-Type Equations III

Setup to derive $\psi_{R;\theta}^{-}(r) = \theta(r) \sum_{r^{-} \prec r} \psi_{R;\theta}^{-}(r^{-})$ continued:

- $\theta : \Gamma(G) \to A$ phase map into ring A.
- Γ_r^- space of maximal paths terminating at x:

• Note: r extends any $\gamma \in \Gamma_r^-$.

Causal Schrödinger-Type Equations IV

Past path functional and past wave function:

• Past path functional encodes "all information flowing into r:"

$$\Psi_{R;\theta}^{-}(r) \coloneqq \sum_{\gamma \in \Gamma_{r}^{-}} \theta(\gamma) \gamma.$$

• Past wave function given by "evaluating" $\Psi_{R;\theta}^{-}(r)$:

$$\psi_{R;\theta}^{-}(r) \coloneqq \sum_{\gamma \in \Gamma_{r}^{-}} \theta(\gamma).$$

• Ψ^- is a "path algebra level precursor" to ψ^- .

Causal Schrödinger-Type Equations V

Recursion formula and result:

• Replacing r with r^- in $\Psi^-_{R;\theta}$ leads to recursion:

$$\Psi_{R;\theta}^{-}(r) = \Big(\sum_{r^{-} < r} \Psi_{R;\theta}^{-}(r^{-})\Big)\theta(r)r.$$

• "Evaluating" yields desired causal Schrödinger-type equation:

$$\psi_{R;\theta}^{-}(r) = \theta(r) \sum_{r^{-} \prec r} \psi_{R;\theta}^{-}(r^{-}).$$

PA in QCT

References

Concluding Remarks

- Above derivation works for any (acyclic directed) graph *G* and ring *A*.
- "Acyclic" can be relaxed ("closed timelike curves.")
- Most interesting: G is a kinematic scheme.
- Related: Isham [11], Raptis [12], Baez [13], etc.
- Central question: what is the phase map θ ?
 - Involves "Lagrangian" or "action."
 - Related: "discrete Einstein-Hilbert actions." (Dowker-Benincasa [14], etc.)
 - Involves arithmetic, finite groups, Galois theory.

Path Algebras

Classical Causal Theory

Quantum Causal Theory

PA in QCT

References

THANKS!

- * ロ * * 個 * * 注 * 注 * の < @

PA in QCT

References

References I

Benjamin F. Dribus. On the Axioms of Causal Set Theory. Preprint. arXiv link: http://arxiv-web3.library.cornell.edu/pdf/1311.2148v3.pdf. Gene Abrams and Gonzalo Aranda Pino. The Leavitt path algebra of a graph. Journal of Algebra, 293, 2, pp 319-334, 2005.

arXiv preprint: http://arxiv.org/pdf/math/0509494v1.pdf.

S. W. Hawking, A. R. King, and P. J. McCarthy.
 A new topology for curved space-time which incorporates the causal, differential, and conformal structures.
 Journal of Mathematical Physics, 17, 2, pp. 174-181, 1976.

References II

David B. Malament.

The class of continuous timelike curves determines the topology of spacetime. Journal of Mathematical Physics, **18**, 7, pp. 1399-1404, 1977.

 Luca Bombelli, Joohan Lee, David Meyer, and Rafael Sorkin. Space-Time as a Causal Set.
 Physical Review Letters, 59, 5, pp. 521-524, 1987.

Keye Martin and Prakash Panangaden.
 A Domain of Spacetime Intervals in General Relativity.
 Communications in Mathematical Physics, 267, 3, pp. 563-586, 2006.

References III

Richard Feynman. Space-Time Approach to Non-Relativistic Quantum Mechanics. Reviews of Modern Physics, 20, 2, pp. 367-387, 1948. John Archibald Wheeler and Kenneth W. Ford. Geons, Black Holes, and Quantum Foam: A Life in Physics.

- W. W. Norton and Company, New York, 1998.
- David Rideout and Rafael Sorkin.
 Classical sequential growth dynamics for causal sets.
 Physical Review D, 61, 2, 024002, 2000.
 arXiv preprint: http://arxiv.org/pdf/gr-qc/9904062v3.pdf.
- Brendan McKay, private communication, August 2013.

References IV

Chris Isham.

Quantising on a Category. Foundations of Physics, **35**, 2, pp. 271-297, 2005. arXiv preprint: http://arxiv.org/pdf/quant-ph/0401175v1.pdf.

- Ioannis Raptis and Roman Zapatrin.
 Algebraic description of spacetime foam.
 Classical and Quantum Gravity, 18, pp. 4187-4212, 2001.
 arXiv preprint: http://arxiv.org/pdf/gr-qc/0102048v2.pdf.
- John Baez, Alexander Hoffnung, and Christopher Walker Higher Dimensional Algebra VII: Groupoidification. arXiv preprint: http://arxiv.org/pdf/0908.4305v3.pdf.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 Dionigi M. T. Benincasa and Fay Dowker. Scalar Curvature of a Causal Set. Physical Review Letters, 104, 18, 181301, 2010. arXiv preprint: http://arxiv.org/pdf/1001.2725v4.pdf.