Math 1550 Section 20 Practice Test 4 Monday November 12, 2012

1. Calculate $\int_0^1 x^{14} dx$. Solution: $\frac{1}{15}$. Easy!

2. Calculate $\int_0^1 0\sqrt{100-x^2} \, dx$. (Hint: the equation of a circle centered at the origin with radius 10 is $x^2 + y^2 = 100$.)

Solution: The integral is one quarter of the area of a circle of radius 10, which is 25π .

3. Calculate $\int_{1}^{e} \frac{d}{dx} \ln x dx$. (Hint: Use the Fundamental Theorem of Calculus and the fact that $\ln x$ is an antiderivative of its derivative.)

Solution: Since the antiderivative is $\ln x$, the FTC says

$$\int_{1}^{e} \frac{d}{dx} \ln x \, dx = \ln e - \ln 1 = 1 - 0 = \mathbf{1}.$$

4. Find a nonzero constant *a* such that $\int_0^a \sin(x) dx = 0$. (Hint: Think about areas canceling.) Solution: The integral is

$$\int_0^a \sin x \, dx = -\cos x \Big|_0^a = -\cos a + \cos 0 = 1 - \cos a,$$

so we need to find some number a such that $\cos a = 1$. **a** = 2π will do.

5. Calculate $f(x) = \int_0^x \left(\int_0^y \left(\int_0^z dt \right) dz \right) dy$ by doing the innermost integral first, then the next integral, and so on.

Solution: The innermost integral is

$$\int_0^z dt = t\Big|_0^z = z,$$

so the middle integral is

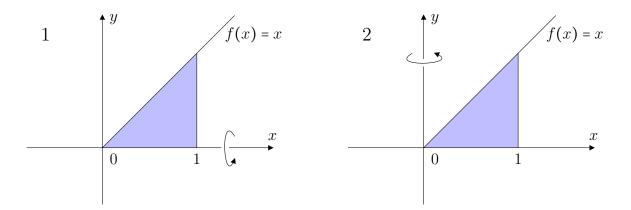
$$\int_0^y z dz = \frac{1}{2} z^2 \Big|_0^y = \frac{1}{2} y^2,$$

so the outer integral is

$$\int_0^x \frac{1}{2}y^2 dy = \frac{1}{6}y^3\Big|_0^x = \frac{1}{6}\mathbf{x^3}.$$

If you had n nested integrals, the answer would be $\frac{x^n}{n!}$.

6. Consider two solids of revolution. The first comes from revolving the region between the graph of f(x) = x and the x-axis from x = 0 to x = 1 around the x-axis, and the second comes from revolving the same region around the y-axis. What is the sum of the two volumes?



Solution: The two solids fit together to form a cylinder of radius 1 and height 1, with volume π .

7. Calculate
$$\int x^{-1} dx$$
.

Solution: $\ln x + C$.

8. Calculate $\int \frac{\sin(x)}{\cos^2(x)} dx$. (Hint: Use integration by substitution.)

Solution: Let $u = \cos x$. Then $du = -\sin x dx$, so the integral is

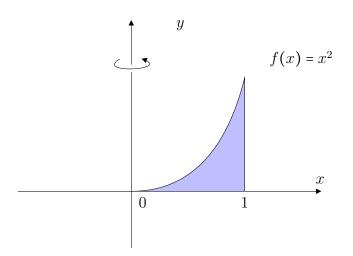
$$\int \frac{\sin(x)}{\cos^2(x)} dx = -\int \frac{1}{u^2} du = -\frac{u^{-1}}{-1} + C = u^{-1} + C = (\cos x)^{-1} + C = \sec x + C.$$

9. Calculate
$$\int \frac{xe^{x^2}}{1+e^{2x^2}} dx \left(\text{Hint: } \frac{d}{du} \tan^{-1}(u) = \frac{1}{1+u^2} \right).$$

Solution: Let $u = e^{x^2}$. Then $du = 2xe^{x^2}dx$, so the integral is

$$\int \frac{xe^{x^2}}{1+e^{2x^2}} dx = \frac{1}{2} \int \frac{du}{1+u^2} = \frac{1}{2} \tan^{-1} u + C = \frac{1}{2} \tan^{-1} e^{x^2} + C.$$

10. Calculate the volume of the solid obtained by revolving the region between the graph of $f(x) = x^2$ and the x-axis from 0 to 1 around the y-axis, using the method of cylindrical shells.



Solution: The radius of a representative shell is x, and the height is $f(x) = x^2$. So the volume integral is

$$V = \int_0^1 (2\pi)(x)(x^2) dx = 2\pi \int_0^1 x^3 dx = 2\pi \frac{x^4}{4} \Big|_0^1 = \frac{\pi}{2}.$$