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Introduction.

Discrete causal theory is an attempt to unify theoretical physics by replacing spacetime with
a discrete causal structure. In discrete causal theory, the concept of causality is fundamental,
while the concept of spacetime is derivative; spacetime is hypothesized to be the macroscopic
manifestation of causal relations among elements of a discrete set. This point of view reverses the
paradigm of general relativity, in which a given event may influence any event in a particular
region of spacetime (its future light cone) and may be influenced by any event in another region
of spacetime (its past light cone). This is illustrated in figure 1 below, which shows a region of
flat two-dimensional spacetime on the left and a discrete causal structure called a causal graph
on the right. Thus, spacetime geometry determines the scope of causality in relativity, while
causality determines (emergent) spacetime geometry in discrete causal theory. The proposal
that causality, together with the metric properties of spacetime, emerge from a single binary
relation on an underlying set, is called the causal metric hypothesis. Discreteness and the
causal metric hypothesis are the fundamental axioms of discrete causal theory.
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Discrete causal theory has the advantages of conceptual simplicity, background indepen-
dence, and of course discreteness. It has the disadvantage of being in a primitive state of
development, too primitive to be decisively predictive or falsifiable. Discrete causal theory has
attracted less interest from physicists and mathematicians than other advanced theories such
as string theory and loop quantum gravity.

Three important examples of discrete causal theory, in order of decreasing generality, are causal
graph theory, causal set theory, and causal dynamical triangulation. These notes will
focus on causal graph theory, but not exclusively. The research project developed here has
three general goals: to lay down a solid foundation for discrete causal theory, to address some
perceived shortcomings in existing versions of the theory, and to refine the theory to the point
where it can be better compared to other theories and experimentally tested. The ultimate
hope, of course, is that discrete causal theory can provide a unified theory of the fundamental
forces of nature. Among the less grandiose but still highly ambitious specific goals of the project
are a successful description of quantum gravity and a more satisfactory interpretation of the
foundations of quantum theory than is currently available.

Overview of General Discrete Causal Theory.

The basic ingredients of discrete causal theory are discrete sets, causality, and probability.
Given causal structures built from these ingredients, it remains to provide a means of de-
scribing and predicting their behavior. This is divided into two steps. First, one describes what
types of behavior are possible; this is called discrete causal kinematics. Finally, one specifies
a dynamical law for predicting what behavior actually occurs in specific situations, and uses
this law to solve initial and boundary value problems; this is called discrete causal dynamics.
The full development of these topics is a major undertaking and currently remains a work in
progress, but at present I can at least offer a fairly clear outline of what is involved.

Discreteness.

The concept of a discrete set is familiar enough, but in fact several distinct topological and/or
metric concepts come into play in discrete causal theory, and it is important to place these
concepts in the proper context to one another. In the simplest possible terms, discreteness
means that the theory has finite building blocks, called elements, which cannot be reduced
to simpler objects. Ideally, as in causal graph theory and causal set theory, these elements
have no internal structure at all; the structure of the theory comes entirely from specifying
a binary relation called the causal relation on the underlying discrete set. The set together
with the binary relation is called the causal structure. In practice, it is often easier to make
contact with known physics by allowing some simplifying assumptions, and some versions of
discrete causal theory allow for a certain amount of internal structure in the elements. For
example, in the theory of causal dynamical triangulation, the elements are a special type of
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four-dimensional triangle called a lorentzian simplex. It is natural to question the meaning
of the “finiteness” of the elements. Given a causal structure, metric properties are inferred
from the properties of the causal relation in such a way that each individual relation is taken
to be finite. In this sense there is a “finite separation” between any pair of elements of the
discrete set, and this separation can be interpreted as “size” or “volume” of the elements. A
common practice in causal set theory is to explicitly assign a “unit of volume” to each element
of the underlying set, but there is no need to make this identification at the outset. A third
topological idea that appears in discrete causal theory is the concept of scale-dependent or
atomic topologies.

Ordinarily, the underlying set in a discrete causal theory is taken to be not only discrete,
but countable. This allows the set to be embedded as a discrete subset (in the relative
topology) of a Euclidean space (or sometimes a Minkowski space) for the purposes of
visualization and illustration. The relations among the elements of the discrete set may then be
represented by directed curves or line segments (Minkowski space provides its own “direction”),
and the result is a concrete Euclidean or Minkowski embedding of a directed graph. More
generally, any discrete causal structure, countable or uncountable, with no auxiliary structure, is
an abstract directed graph. This is why causal graph theory is the most general form of pure
discrete causal theory. For countable causal structures, Euclidean or Minkowski embeddings are
very useful conceptually, but it is important to remember that they produce a misleading picture
of the origin of metric structure. Indeed, in such an embedding, the manifold structure of the
embedding space imposes a spurious metric structure on the causal structure. The paradigm of
discrete causal theory is precisely the opposite: that the metric structure of physical spacetime
is an emergent property of the binary relation on an underlying discrete set. This is discussed
in more detail below.

There are several good reasons for preferring discrete theories over nondiscrete theories. First,
discreteness is one of the fundamental characteristics of quantum theory. To be sure, not
every aspect of ordinary quantum mechanics is discrete, but repeatedly over the last century
discreteness has proven to be the key conceptual ingredient in solutions to both experimental
and theoretical problems in microscopic physics. In quantum field theory, one begins with
a continuous classical field (e.g. a Maxwell field or Yang-Mills field) and then carries
out a process of quantization in which elementary particles (discrete entities) arise as
the quanta of the classical field. General relativity describes spacetime itself as a continuous
classical field, and although quantization of general relativity presents some unique challenges1

compared to Maxwell theory and Yang-Mills theory, there is nothing particularly revolutionary
about expecting discrete spacetime quanta to emerge from a successful theory of quantum
gravity. In the spirit of some of the former successes of discreteness hypotheses, such as the

1The techniques used to quantize Maxwell theory or Yang-Mills theory lead to nonrenormalizability for
general relativity. Some practitioners of loop quantum gravity believe that they have succeeded in quantizing
general relativity by means of a different procedure called the loop representation, which was originally
conceived as an approach to Yang-Mills theory but proved less successful for that purpose. Loop quantum
gravity should certainly be taken seriously, but it suffers from some limitations. I will discuss loop quantum
gravity briefly in the second part of the introduction, and the theory will make additional appearances for
comparative purposes at various points throughout these notes.
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analysis of the black-body problem that lead to the definition of Planck’s constant, discrete
theory holds promise for resolving some of the outstanding problems in microscopic physics
involving the appearance of intractable infinities in calculations. The very presence of such
infinities should be viewed as evidence of irrelevant information in the theory, and dubious
nondiscrete structure is an obvious candidate for the source of the irrelevance.

Discreteness is sometimes viewed as “the alternative” to continuum theories, or theories
involving manifolds. But of course discrete sets, continua, and manifolds are all “best-case sce-
narios” in one way or another; they all have a high degree of simplicity and uniformity, and they
all exhibit relatively little pathological behavior. Thus, objections to theories involving continua
and/or manifolds are not automatically arguments for discrete theory. However, it is logical to
explore the simplest alternatives first, and for this reason it is worth noting some additional
doubts involving continuum and/or manifold theories. While no experiment achievable in the
foreseeable future is likely to approach the Planck scale, it is believed by many that absolute
physical limitations (such as the gravitational collapse of measuring devices) on experimenta-
tion may intervene as this scale is approached.2 Even if this is not the case, it is still likely
that nondiscrete theories will always hypothesize the existence of experimentally inaccessible
entities. Of course, the existence of additional layers of structure is always possible whether
they are experimentally accessible or not, but it seems better to add additional structure only if
necessary rather than assuming an infinite regression of scales at which nothing new happens,
or for which unfalsifiable hypotheses are made. Finally, quantum nonlocality can be viewed
as direct evidence of the nonmanifold structure of spacetime, from the proper perspective. More
precisely, nonlocal interpretations of experiments such as tests of Bell’s theorem are based on
the assumption of a metric structure for spacetime distinct from the causal structure, in the
sense that events are viewed as being causally local (i.e. as directly influencing one another)
without being metrically local (i.e. “nearby in space”). However, if all metric structure is de-
fined in terms of causal structure, this distinction disappears along with the manifold structure
of spacetime. This is the viewpoint provided by the causal metric hypothesis, which I turn
to next.

The Causal-Metric Hypothesis.

Causality refers, of course, to cause and effect. Ideally, there is only one type of relation
among the elements of a discrete causal theory, and these relations are taken to be causal
relations. This approach depends on the assumption that the essence of causality can be
captured by a binary relation, but discrete causal theory goes further by proposing that all
metric properties, such as distance and time, also arise from the same binary relation. In
particular, the most general versions of discrete causal theory abstain from any independent
notion of spacetime locality. In particular, this is the case in causal graph theory and causal
set theory. This identification of causality with a binary relation, and the proposal that metric
structure emerges from the same relation is called the causal-metric hypothesis. Besides

2There are also good reasons to doubt the significance of the Planck scale, but analysis these reasons will be
postponed in favor of a more detailed discussion later in the notes.

4



having the advantages of simplicity and economy, the causal-metric hypothesis automatically
resolves problems arising from the existence of distinct causal and metric structures, such as
nonlocality of entangled states in quantum theory and time-travel paradoxes3 in general
relativity. As with the absence of internal structure of the fundamental elements of discrete
causal theory, the causal-metric hypothesis is sometimes relaxed in practice; in causal dynamical
triangulation, for instance, the fundamental triangles are taken to be related both spatially and
causally. Thus, from an abstract perspective, causal dynamical triangulation requires partially-
directed colored graphs; i.e. graphs involving distinct symmetric and non-symmetric binary
relations, for its description.

The causal-metric hypothesis, if correct, greatly simplifies and clarifies theoretical physics. In
particular, it is the purest possible version of background independence, a subject of much
tension between advocates of loop quantum gravity and string theory. Background indepen-
dence means that the entire structure of a theory is dynamical; there is no static physical
embedding space in which the dynamical entities of the theory reside. In this sense, gen-
eral relativity, and hence loop quantum gravity, are background-independent, while quantum
mechanics, quantum field theory, and string theory are background dependent. In fact, back-
ground dependent theories generally possess three distinct types of structures: background
structures, dynamical structures, and causal structures. For example, string theory in-
cludes a background space, dynamical entities such as p-branes with metric structures, and
the causal structure. Background-independent theories, as commonly understood, eliminate
the background structure, while possibly retaining some degree of distinct metric structure.
The causal-metric hypothesis goes further, by identifying metric structures as emergent entities
arising from the causal structure.

The causal-metric hypothesis does not settle any of the controversial issues involving causality
itself, only those arising from viewing the causal and metric structures of the universe as distinct.
For instance, the issues of self-causation, uncaused events, first causes, terminal effects,
infinite causal regression and infinite causal progression are all untouched by the causal-
metric hypothesis. Indeed, as stated above, the causal-metric hypothesis merely states that
what are ordinarily viewed as metric properties, both spatial and temporal, along with the usual
notion of cause and effect, are all properties of a single binary relation; it says nothing about
the actual properties of this relation. For example, closed time-like curves and backward
time-travel exist in universes for which the binary relation has cycles, while these phenomena
are absent if the relation is acyclic. Either type of theory is consistent, and no paradoxes
arise. Rather, one must simply decide which theory or theories best agree with observation.
As for any theory, empirical evidence may or may not uniquely discriminate among alternative
explanations of singular, non-reproducible phenomena (such as the origin of the universe).
In practice, physicists often make assumptions about some of these issues. For instance, self-
causation is widely, thought not universally, viewed as pathological. In fact, in causal set theory,

3Confusion about time travel arises from two sources: conflation of time and causality, and uncertainty
about the nature of causality itself. The first source of confusion is completely eliminated by the causal-metric
hypothesis, and along with it any actual paradox. As detailed below, the second source of confusion reduces to
(ideally testable) questions about the actual properties of the binary relation representing the causal structure,
such as whether or not it is acyclic and whether or not it has maximal and minimal elements.
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acyclicity of the causal relation is taken as one of the axioms. In my development of discrete
causal theory, I will also focus on the case in which self-causation is omitted, but not exclusively.
The other issues mentioned above, which involve causal boundedness, (uncaused events, first
causes, etc.), cannot be similarly avoided in any reasonable causal theory, because of quantum
theoretical and cosmological considerations.

Probability.

The incorporation probability into discrete causal theory is motivated by the philosophy that
the statistical nature of quantum theory is fundamental and not merely a result of theoretical or
experimental limitations. This is the opinion of the vast majority of physicists today. Apparent
experimental violation of Bell’s inequalities is regarded by many as conclusive proof of this
viewpoint, although the experiments that have actually been done to date are not ideal and there
remain a number of less obvious alternative interpretations. I have already alluded to Bell’s
theorem above as background to the suggestion, motivated by the causal-metric hypothesis, that
“quantum nonlocality” is merely a misunderstanding resulting from the implicit assumption that
spacetime has distinct metric and causal structures, but this does not mean that all nonclassical
quantum phenomena can be explained away by discrete causal theory. In particular, there are
many reasons, both experimental and philosophical, for accepting the uncertainty principle
as a fundamental property of nature.

Of course, there are differences of opinion about how this apparent indeterminism4 should
be interpreted. Most physicists in the last half of the twentieth century regarded this behavior
as evidence of a single, fundamentally statistical universe (the Copenhagen interpretation
of quantum theory). More recently, partly (though not entirely) because of the influence of
string theory, many have come to prefer the many-worlds interpretation, in which observed
phenomena are regarded as merely one branch of a quantum multiverse, which includes every
possible alternative. In any case, beginning with a probabilistic theory obviously does not rule
out the possibility of a deterministic one; namely the special case in which a given probability
is unity. Statistical universes, multiverses, and deterministic universes are all possible objects
of study in discrete causal theory, depending on the form of the dynamical law.

Prediction in Causal Theory.

Physical theories are ultimately judged by their predictive power. Generally, though not invari-
ably, predictions of interest concern the future. In particular, the emphasis on experimental

4Some prefer to view quantum mechanics as a deterministic but acausal theory, in the sense that the evolution
of the state is deterministic and only the results of measurements are uncertain. In this view, the causes are
insufficient to specify the effect; hence the term acausal. When I refer to quantum mechanics as nondeterministic,
I mean, for instance, that there is no way to make a particle return a particular pair of values for consecutive
position and momentum measurements. Either usage is fine provided it is explained clearly and used consistently.
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verification and reproducibility in the scientific method calls for predicting, and to a lim-
ited extent, determining, the future. A typical problem is to predict the evolution of a system
based on knowledge of its present state. For technical reasons, it is necessary in discrete causal
theory to define “states” to include some of the past behavior of the system as well; at present
I will ignore the details of how this is done, although this issue plays a significant role in the
theory of entropy and in dynamics more generally, as discussed below. In temporal language,
the present state of a system means the entire spatial extent of the system at a moment in
time. This depends, of course, on the reference frame. In general relativity or string theory,
the present state of a system is a spacelike hypersurface. The past is the set of spacetime
events from which a signal sent at the speed of light could have reached the system. Using
the causal-metric hypothesis, the problem can be restated in the language of causal theory as
follows: the present state of a system is a collection of causally unrelated elements of the causal
structure. In causal graph theory or causal set theory, such a collection is called an antichain.
In causal dynamical triangulation, such a collection is a set of simplices sharing a given value
of the discrete time variable. The past of a system in causal graph theory or causal set theory
is the set of all elements connected by a causal chain to an element of the “present” antichain.
In causal dynamical triangulation, the past is the set of all simplices connected to a “present”
simplex by a sequence of simplices with strictly increasing time values.

In discrete causal theory, then, predicting the future means specifying the properties of collec-
tions of elements by means of knowledge about elements causally influencing those collections.
This is illustrated schematically in figure 2 below. The yellow region represents the entire causal
structure. The blue-and-red region represents the system under consideration, and the thick
curve dividing the blue region from the red region represents the present state of the system.
The blue region represents the known portion of the system, and the red region represents the
portion of the system one wants to predict. The causal direction, which is the same as the
arrow of time given the causal-metric hypothesis, points up the page, which is the usual con-
vention. The schematic nature of the diagram makes no hint of discreteness, and indeed, such
a diagram applies equally well to nondiscrete causal theory.
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The notion of present depends on the point of view, or reference frame. The dashed curve in
the diagram shows an alternative choice of present. Also, note that the diagram represents an
entire history; the elements on the bottom boundary have no cause, and the elements on the
top boundary have no effect. These boundaries may represent absolute causal horizons or
may merely indicate the region of interest or accessibility. The region of interest in the present
diagram is the red and blue area indicating the system under study. The lower boundary of the
blue region does not indicate a causal horizon, but merely the limit of knowledge. Similarly, the
upper boundary of the red region represents the “end of the experiment,” not the end of time.
For instance, it might represent the point at which data is no longer collected or analyzed.

The diagram represents a causal structure in an ex post facto manner, and this deserves some con-
sideration. Even in general relativity, there has been some Zeno-like controversy5 over whether

5See, for instance, Relativity theory does not imply that the future already exists: a counterexample, by Rafael
Sorkin.
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anything happens in the sense that viewing spacetime as a 4-dimensional manifold treats its
existence as a fact rather than a process. It does not help to think of the manifold “devel-
oping over time,” because time is part of its structure. I will explain the precise manner in
which one may think of systems “developing” or “evolving” in discrete causal theory, but the
above schematic diagram is not intended to indicate that anything in particular is determined
about the future of the system, represented by the red region. Rather, the red region represents
“whatever happens,” which is what the observer with knowledge of the blue region wants to
predict. I will now outline how this is done.

Discrete Causal Kinematics.

The first step is to describe, in very general terms, what is physically possible. This specification
of possible behavior without referring to any dynamical law that might favor one causal structure
over another is called causal kinematics. In causal kinematics, one begins with a particular
causal structure and asks which larger causal structures the original structure can be embedded
into in such a way that the “new elements” may be affected by, but may not affect, the elements
of the original structure. Thus, the larger causal structures provide possible futures for the
original structure. Figure 3, below, illustrates two possible futures for the known region in the
previous diagram. The operation of adding a possible future is called a pseudotransition.
Only two pseudotransitions are shown in figure 3, but there is usually an abundance, sometimes
even an uncountable number, of pseudotransitions beginning from a given causal structure.

FIGURE 3
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In discrete causal theory, it makes sense to talk about the immediate future. For example,
in the causal graph in figure 1 on page 1, u is in the immediate future of x, but y and z are
not in the immediate future of x. A transition6 in discrete causal theory is a pseudotransition
that adds only an immediate future to the causal structure. A composition of transitions is
a pseudotransition, and is in fact a transition if the second transition adds no new elements
causally related to the elements added by the first transition. In causal graph theory or causal
set theory, a transition adds an antichain: a collection of elements with no causal relations
among them. In causal dynamical triangulation, a transition adds a single “layer” of simplices. A
given transition is either reducible into a composition of “simpler” transitions, or irreducible.
Irreducible transitions are special because every transition, and hence every pseudotransition,
can be written in terms of irreducible transitions. In causal graph theory or causal set theory, an
irreducible transition adds a single element. In causal dynamical triangulation, an irreducible
transition adds a single simplex.

In figure 4 below, the circles represent causal structures, and the line segments connecting them
represent irreducible transitions. The numbers are labels, added for the purpose of distinguishing
among causal structures, but have no physical meaning.

FIGURE 4
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The direction of the transitions is up the page, so each causal structure strictly contains all
structures connected to it by an ascending chain of line segments. For example, structure 14
strictly contains structure 13, which strictly contains structure 9, and so on. For a given discrete
causal theory, the analogous diagram containing all possible causal structures and all irreducible
transitions is called the universal kinematic scheme for the theory. It is “universal” because

6In causal set theory, the term transition is used to mean a pseudotransition that adds only a single element.
This is what I call an irreducible transition; see below.

10



all irreducible transitions appear in the scheme. There are other useful kinematic schemes which
are nonuniversal, but I will focus on universal kinematic schemes for the moment.

Figure 4 shows only a small part of a universal kinematic scheme, since universal kinematic
schemes are necessarily infinite, as explained below. In very general terms, a universal kinematic
scheme provides an “explanation” or “explanations” for every possible causal structure in the
sense that tracing backwards from a given causal structure “tells a story” about the “evolution”
of that causal structure. Usually there are very many distinct stories in this sense, because there
are usually very many distinct descending paths beginning from any given causal structure in
a kinematic scheme. All these stories are equally valid. For example, the paths 1 → 4 → 9 →
13 → 14 and 1 → 2 → 6 → 12 → 14 tell two different stories about the evolution of structure
14. Note that these two stories are not physically distinct histories, since each causal structure
(in particular, structure 14) contains its entire history within itself. Rather, they are different
points of view about the same history, analogous to reference frames in relativity. Looking back
at the schematic diagram of the causal structure in figure 2 on page 4, one can see how families
of “horizontal sections” represent reference frames in this sense. If one slices the causal structure
into horizontal sections in two different ways, one obtains two different but physically equivalent
methods of reconstructing the causal structure. This is illustrated in figure 5 below.

FIGURE 5
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Ascending paths terminating at different causal structures in a universal kinematic scheme
represent the evolution of physically distinct universes. For example, returning to figure 4, the
paths 1 → 2 → 6 → 12 → 14 and 1 → 2 → 5 → 10 → 17 represent different physics, since
the structures 14 and 17 are physically distinct. Thus, a universal kinematic scheme can be
viewed as either a library of possible universes or a single causal multiverse. In multiverse
interpretations of quantum mechanics, every statistical event is taken to represent a “branching
off” of the universe into distinct histories, and this is similar to the idea of a universal kinematic
scheme. An important difference is that different paths in a quantum multiverse always represent
different physics (i.e. a quantum multiverse is a tree), while two paths sharing a common initial
and terminal structure in a universal kinematic scheme represent identical physics. Another
difference is that a quantum multiverse depends on an external time variable, while a universal
kinematic scheme organizes objects with internal temporal (i.e. causal) structures.

You may have already noticed that a universal kinematic scheme itself has a “causal structure,”
where a causal structure B is in the formal future of a causal structure A if there is a sequence
of irreducible transitions from A to B in the universal kinematic scheme. This multilevel struc-
ture built from causal structures of causal structures is one of the most interesting and useful
features of causal theory.

Universal kinematic schemes are generally very large. In particular, given any pair of causal
structures A and B, their disjoint union A t B is again a causal structure, which is related
to both A and B by pseudotransitions, and hence by compositions of irreducible transitions.
Thus, there are paths from A and B to AtB in the universal kinematic scheme. Therefore, no
universal kinematic scheme has a maximal element, and every pair of elements in a universal
kinematic scheme has a supremum. The empty causal structure is an infimum for any pair of
causal structures, so a universal kinematic scheme is an order lattice.

Irreducible transitions generally do not give a very natural picture of the evolution of a discrete
causal structure, since they add only “one element at a time” to the causal structure. It is
physically more natural to think of entire generations of elements “appearing simultaneously,”
like spacelike hypersurfaces in relativity. For this reason, it is convenient to introduce other
kinematic schemes which directly relate causal structures differing by a single generation, rather
than by a single element. In general, a kinematic scheme is a directed graph whose vertex
set consists of all possible causal structures and whose directed edges are transitions. There
are some additional technical requirements on the edges which I will not discuss further at this
point.

Discrete Causal Dynamics.

The final step in constructing a discrete causal theory is to specify a dynamical law from which
to calculate which irreducible transitions are favored in the universal kinematic scheme. A
dynamical law is a function µ whose source is the set of irreducible transitions in the universal
kinematic scheme and whose target is a multiplicatively closed subset of a ring. Typical targets
for a dynamical law µ are the unit interval [0, 1] in Q or R, or the unit circle S1 in C. In
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the first case, µ is generally a family of probability measures, one for the set of irreducible
transitions from each causal structure. In the second case, µ is generally taken to specify a
phase factor for each irreducible transition. Other choices are possible, but the ultimate
purpose of specifying a dynamical law is to allow for (generally statistical) physical predictions,
and the choices mentioned above are some of the more obvious possibilities pointing in this
direction. For example, a dynamical law to the unit interval associates a probability with
every path in the universal kinematic scheme, by multiplying together the images under the
dynamical law of the irreducible transitions in the path. This produces a dynamics analogous
to that of a classical stochastic process. By contrast, a dynamical law to the unit circle
associates a phase factor with each path by multiplying the phase factors associated to each
irreducible transition in the path. Interference of paths then produces a theory analogous to
Feynman’s path integral formulation of quantum theory. As discussed above, paths in the
universal kinematic scheme with the same initial and terminal structures represent the same
physics from different perspectives, so the concept of a sum over histories between two points
in state space, where each path represents a different physical history of the system in question,
must be modified to account for this extra information. In particular, recovery of the usual
state space picture requires appropriate definitions of states and state functions, which are
somewhat delicate.

Figure 6, below, shows a dynamical law to the unit interval on a portion of the universal
kinematic scheme illustrated in figure 4. The probabilities assigned to the transitions from a
given causal structure in the diagram always sum to unity because the dynamical law gives
individual probability measures on each such set of transitions. More generally, there may be
an infinite or even uncountable number of transitions from a given causal structure, so some
care must be taken in properly analyzing sums of probabilities.
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From the definition, it is clear that dynamical laws are deterministic only in special cases. One
might expect determinism in a classical theory and statistical behavior in a quantum theory,
but of course not every statistical theory is a suitable quantum theory. There is much to be
said in this context about the essential distinctions between classical and quantum theories,
the quantization of classical theories, and so on, but I will not belabor these issues here in the
introduction.

It is a worthwhile exercise to consider carefully the physical meaning of the values associated to
the irreducible transitions by the dynamical law in figure 6. For example, if one knows that a
causal structure C is related to structure 12 by a pseudotransition, then it is physically mean-
ingless to ask for the probability that the evolution of C included the transition 7 → 12 instead
of the transition 6 → 12. This is because all kinematic stories explaining the evolution of C are
equally valid. However, if one knows that a C is related to structure 7 by a pseudotransition,
it makes sense to ask for the probability that C is also related to 12 by a pseudotransition. In
this case, the probability is at least 3

4
. The probability may be greater than 3

4
; in particular, the

universal kinematic scheme includes the disjoint union of structure 12 and structure 13, which
is related to structure 13 by a pseudotransition, providing another possible way for structure 7
to “evolve” into a structure related to structure 12 by a pseudotransition. This is the sense in
which the dynamical law allows for predicting the evolution of a causal structure. In general,
the physically relevant information a dynamical law provides about a pair of causal structures
A and B is the sum of the probabilities along all paths in the universal kinematic scheme begin-
ning at A and intersecting some causal structure C related to B by a pseudotransition. Tracing
back down from C through B to A, one is justified in regarding B as a stage in the evolution
of A.

To do physics in a nonuniversal kinematic scheme, it is necessary to translate the values as-
sociated by the dynamical law to irreducible transitions in the universal kinematic scheme to
appropriate values for transitions in the nonuniversal kinematic scheme. Alternatively, one could
attempt to define a dynamical law directly on a nonuniversal kinematic scheme, but this re-
quires some care. A nonuniversal kinematic scheme represents an arbitrary choice of viewpoint,
and such a choice should not affect physical predictions. The requirement that the physical
predictions of a dynamical law should not depend on arbitrary nonphysical information is called
covariance. In a universal kinematic scheme, different reference frames for a given causal
structure C are represented by different paths terminating at C. Since the values provided by
a dynamical law depend only on individual irreducible transitions from C, without reference
to paths terminating at C, covariance a priori imposes no conditions on the values assigned to
irreducible transitions in a universal kinematic scheme.7 However, covariance does impose con-
ditions on how the representations of a dynamical law transform between nonuniversal kinematic
schemes.

7Practitioners of causal set theory do impose conditions on probabilities in the universal kinematic scheme
(the positive sequential scheme in this case) in the name of a principle referred to as discrete general
covariance. I do not think this is a valid principle. More precisely, my view is that a principle similar to
discrete general covariance applies at the level of the tree of originary chains on the universal kinematic
scheme, in which each element encodes a causal structure together with an arbitrary choice of reference frame.
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Methods For Deriving Dynamical Laws.

How does one go about determining an appropriate dynamical law? The ultimate judge is
experimental evidence, but as for any theory involving extremely small scales, the process also
involves the application of philosophical and mathematical principles, inspiration, and luck. I
will briefly mention some of the more important principles here. A method which has been
very useful in quantum theory, general relativity, and a number of more advanced theories is
to first define a classical theory, often by means of an action principle, then quantize
to obtain a quantum theory. The action principle is usually very simple conceptually, and
intimately related to the basic structure involved. This provides hope of guessing the proper
action directly. For example, the Einstein-Hilbert action8 in general relativity depends only
on the curvature scalar and the metric tensor. There is a discrete version of the Einstein-
Hilbert action, called the Regge action, which is used in causal dynamical triangulation. There
have also been efforts to modify the Einstein-Hilbert action for use in causal set theory. Despite
its previous success, this approach suffers from some apparent limitations, the details of which
are better left for a more complete discussion in a later section. In particular, there is difficulty in
dealing with topology change, which is almost certain to play a role in any sufficiently general
discrete causal theory. The relevant topology here is not, of course, the discrete topology, but
the topology emerging from the causal structure.

Classical fields and potentials are among the basic ingredients of the above approach, and
analogues of these concepts can be studied on their own merits without applying the entire ma-
chinery of the action principle and canonical quantization. Although fields and potentials are
sometimes imposed as auxiliary structures, ideally they would arise from the causal structure
itself. Otherwise, the binary relation representing the causal structure would be only part of
the theory, and causal interpretations of interactions among the auxiliary fields would result in
“multiple types of causality,” which would be a depressing step backward from the simplicity
of the causal-metric hypothesis. Fortunately, one can define natural classical potentials on
causal structures whose forms are completely determined by the causal relation; indeed, taken
together, they are equivalent to the causal relation. Since the formal structure of the classical
dynamical laws of successful field theories such as Maxwell theory, Yang-Mills theory, and gen-
eral relativity are similar to one another and are easily expressed in terms of the corresponding
vector potentials, one might hope that a classical dynamical law could be written for dis-
crete causal theory in terms of the natural classical potentials. However, since the dynamical
laws alluded to above are differential equations whose form depends on the dimension of the
spacetime manifold, the analgous equations for discrete causal theory are not easy to write
down. In particular, the dimension and curvature of discrete causal structures are delicate
subjects, especially locally. Since the discrete analogues of differential equations involve local
properties, and since dimension and curvature play an indispensable role in successful field the-
ories for manifolds, there is still some mystery involved in how to successfully complete this
approach.

8Many view the Einstein-Hilbert action as only a low-energy approximation.

15



A second method by which one might try to deduce the dynamical law is by applying certain
general physical principles that are believed on the basis of experience to be universal. Two
such types of principles are conservation principles and entropic principles. Deciding what
should be conserved is based partly on aesthetic grounds and partly on hypotheses about how
familiar physical quantities (such as angular momentum) arise from the causal structure. One
of the favorable aspects of discrete causal theory is that there are natural definitions of entropy
for discrete causal structures, governed by simple counting arguments. Successful application
of these definitions relies on appropriate definitions of states and state functions. This is not
as simple as it might appear, since classical definitions of entropy rely on quantities involving
time derivatives, whose discrete causal analogues involve the immediate past of a system as well
as the present. Because of this, one obtains very different answers from different assumptions
about the causal relation. In particular, the axioms of causal set theory lead to different result
than my causal graph theory axioms. It seems possible that a generalized version of the second
law of thermodynamics based on discrete causal entropy might be quite restrictive, and it
is not out of the realm of possibility that such a law will eventually prove to be the only law
necessary. The close relationship between gravity and thermodynamics has already been noticed
from multiple points of view, and attempts to describe gravity by means of entropic principles
are known collectively as thermogravity. Identifying an appropriate version of the second
law of thermodynamics as the unique dynamical law of discrete causal theory would be the
best possible scenario, since the resulting theory would have precisely one type of fundamental
object, one type of interaction, and one law. Ideally, in light of the likely difficulty of obtaining
direct experimental evidence, one would wish to link such a law to other conservation laws
and derive it from multiple independent points of view (for instance, by means of the natural
classical potentials mentioned above). Such efforts are ongoing at present.

Summary.

1. Discrete causal theory is an attempt to unify theoretical physics by replacing spacetime
with a discrete causal structure.

2. In discrete causal theory, causality is fundamental, and spacetime is viewed as an emergent
structure giving accurate approximations only at large scales.

3. Discrete causal theory has the advantages of conceptual simplicity, background inde-
pendence, and discreteness.

4. To date, discrete causal theory is not well-developed.

5. Three important examples of discrete causal theory are causal graph theory, causal
set theory, and causal dynamical triangulation.

6. The ingredients of discrete causal theory are discrete sets, causality, and probability.

7. Discreteness is a desirable property for a variety of reasons, including the success of dis-
creteness hypotheses in quantum theory and the potential of discrete theories to avoid
certain technical problems with existing nondiscrete theories.
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8. Discrete causal theory is based on the causal-metric hypothesis, which states that
causality and the metric structure of the universe are both manifestations of a single
binary relation.

9. The incorporation of probability into discrete causal theory is based on the philosophy that
the statistical properties of quantum theory represent fundamental principles of nature.

10. Prediction in discrete causal theory means specifying information about the properties
of collections of elements of the causal structure by means of knowledge about elements
causally influencing those collections.

11. Discrete causal kinematics is the description of what causal structures are physically
possible, without referring to any dynamical law that might favor one structure over
another.

12. Discrete causal kinematics involves specifying possible futures for every possible causal
structure.

13. The operation of adding a possible future to a causal structure is called a pseudotransi-
tion.

14. In discrete causal theory, it makes sense to talk about the immediate future.

15. A transition in discrete causal theory is a pseudotransition that adds only an immediate
possible future to the causal structure.

16. Irreducible transitions play an important role in discrete causal theory.

17. The directed graph whose vertices are all possible causal structures and whose edges are
all irreducible transitions for a given causal theory is called the universal kinematic
scheme for the theory.

18. Two directed paths with the same initial and terminal structures in the universal kinematic
scheme represent the same physics, but from different reference frames.

19. The universal kinematic scheme may be viewed either as a library of possible universes or
as a single causal multiverse.

20. The universal kinematic scheme itself has a causal structure given by the irreducible
transitions.

21. Nonuniversal kinematic schemes often give a more natural physical picture than the
universal kinematic scheme.

22. Nonuniversal kinematic schemes allow for transitions involving entire generations of ele-
ments, instead of one element at a time.

23. A dynamical law is a function from the set of irreducible transitions in the universal
kinematic scheme to a multiplicatively closed subset of a ring.
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24. Typical targets for a dynamical law are the unit interval [0, 1] in R or Q and the unit
circle S1 in C.

25. The purpose of a dynamical law is to give probabilities of various histories. Depending
on the dynamical law, the resulting theory can resemble either a classical stochastic
theory or a quantum sum over histories.

26. A standard method of deriving a dynamical law for a field theory is to begin with a
classical theory, often defined by means of an action principle, then quantize the
theory to obtain a quantum theory. This method may not work for discrete causal
theory because of technical issues such as topology change.

27. Discrete causal structures have natural classical potentials analogous to the vector
potentials in familiar field theories such as Maxwell theory, Yang-Mills theory, and general
relativity.

28. A possible method of deriving a dynamical law for discrete causal theory is to work with
the natural potentials directly. However, there are difficulties with this approach involving
the analogues of manifold structures such as dimension and curvature.

29. Another method for trying to find an appropriate dynamical law is to apply general
physical principles such as conservation principles or entropic principles.

30. Discrete causal structures have natural notions of entropy whose precise form depends on
the definitions of states and state functions.

31. An appropriate version of the second law of thermodynamics for discrete causal struc-
tures may prove to be the desired dynamical law.
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